-
Fizyka
-
- Podstawowe wielkości, podstawowe jednostki
- Podstawowe zasady ochrony radiologicznej
- Ochrona radiologiczna - zwiększanie odległości
- Ochrona radiologiczna - osłony
- Ochrona radiologiczna - czas
- Oddziaływanie promieniowania alfa z materią
- Oddziaływanie promieniowania beta z materią
- Oddziaływanie promieniowania gamma z materią
- Ochrona przed promieniowaniem neutronowym
- Dawki graniczne
- Licencjonowanie i nadzór działalności związanej z narażeniem na promieniowanie jonizujące
-
Technologia
-
- Co to jest elektrownia?
- Generacje elektrowni jądrowych
- Rodzaje reaktorów dla elektrowni jądrowych (klasyfikacja)
- Reaktor wodny ciśnieniowy (PWR)
- Reaktor wodny wrzący (BWR)
- Reaktor ciężkowodny ciśnieniowy (PHWR) - CANDU
- Reaktor lekkowodny moderowany grafitem (LWGR) - RBMK
- Reaktor chłodzony gazem (GCR, AGR, MAGNOX)
- Reaktor wysokotemperaturowy (HTR)
- Reaktor prędki powielający (FBR)
- Małe reaktory modułowe (SMR)
- Teren elektrowni jądrowej
- Reaktory jądrowe na okrętach podwodnych i statkach
-
- Bezpieczeństwo jądrowe - jak to się zaczęło?
- Czym jest bezpieczeństwo jądrowe?
- Bardzo ważne zadanie - ochrona przed promieniowaniem
- Incydent a awaria
- Zasady zapobiegania awariom
- Filozofia systemów bezpieczeństwa
- Co robić, jeśli mimo wszystko awaria się wydarzy?
- Generacje reaktorów a bezpieczeństwo
- Elektrownia jądrowa nie może wybuchnąć jak bomba atomowa!
- Oddziaływanie elektrowni jądrowych na środowisko: rodzaje emisji i monitorowanie środowiska
- Woda z elektrowni jądrowej jest bezpieczna!
- Ocena bezpieczeństwa, ocena ryzyka
- Dozór jądrowy w Polsce
-
- Skąd się biorą odpady promieniotwórcze?
- Rodzaje odpadów promieniotwórczych
- Co robimy z odpadami promieniotwórczymi w Polsce?
- Przetwarzanie odpadów promieniotwórczych
- Składowanie odpadów nisko- i średnioaktywnych
- Ile odpadów promieniotwórczych wytwarza elektrownia jądrowa?
- Jak transportujemy odpady promieniotwórcze?
- Postępowanie z wypalonym paliwem jądrowym
- Co się dzieje z wypalonym paliwem jądrowym po wyjęciu z rdzenia reaktora?
- Recykling wypalonego paliwa jądrowego - zamknięty cykl paliwowy
-
Społeczeństwo
-
- Percepcja społeczna - odkrycie promieniowania jonizującego
- Percepcja społeczna - era rozszczepienia i wykorzystanie energii jądrowej
- Percepcja społeczna - awaria w elektrowni Three Mile Island i w Czarnobylu
- Percepcja społeczna - model oceny skutków biologicznych promieniowania jonizującego
- Energetyka jądrowa - najbardziej bezpieczną metodą pozyskiwania energii
- Główne obawy dotyczące bezpieczeństwa elektrowni jądrowych
- Poparcie dla energetyki jądrowej w Polsce
-
- [MIT] Ludzie mieszkający w pobliżu elektrowni jądrowej otrzymują zwiększone dawki promieniowania jonizującego
- [MIT] Świat odchodzi od energetyki jądrowej
- [MIT] Polska nie poradzi sobie z budową i eksploatacją elektrowni jądrowej
- [MIT] Elektrownia jądrowa jest łatwym celem dla terrorystów
- [MIT] Energetyka jądrowa nie jest bezpieczna
- [MIT] Odpady promieniotwórcze nie mogą być bezpiecznie transportowane
- [MIT] System chłodzenia elektrowni bardzo szkodzi środowisku wodnemu i populacji ryb
- [MIT] Stopienie rdzenia reaktora jest bardzo prawdopodobne
- [MIT] Zużyte paliwo jest silnie radioaktywne i trzeba je chronić nawet przez 10 000 lat
Metoda C-14
Czy ktoś zna już metodę C-14, metodę określania wieku z wcześniejszego modułu o rodzajach promieniowania (moduł – Promieniowanie jonizujące)? Ponieważ znamy już dobrze prawo rozpadu, możemy sami z jego pomocą obliczyć wiek kości.
Poprzez reakcje jądrowe składników pierwotnego promieniowania kosmicznego z azotem w stratosferze stale wytwarzany jest promieniotwórczy izotop węgla C-14. Poprzez ciągłe tworzenie i promieniotwórczy rozpad C-14 wytwarza się pewna równowaga pomiędzy promieniotwórczym izotopem C-14 a pozostałymi izotopami węgla. Poprzez fotosyntezę dwutlenek węgla występujący w powietrzu ze swoim naturalnym stosunkiem C-12 do C-14 zostaje w procesie fotosyntezy wbudowany w żyjące rośliny i w ten sposób, poprzez łańcuch pokarmowy dostaje się do wszystkich zawierających węgiel molekuł w organizmach żywych – roślin, ludzi i zwierząt.
Gdy umiera istota żywa, stoper C-14 zaczyna odmierzać czas. Ponieważ teraz nie jest doprowadzany już nowy węgiel – ani C-12, ani C-14 – to przez rozpad promieniotwórczego C-14 jego stosunek do niepromieniotwórczego C-12 będzie coraz mniejszy.
Gram węgla w istocie żywej zawiera ok. 6 × 1010 atomów izotopu C-14. Czas połowicznego rozpadu tych nuklidów wynosi 5730 lat.
Niestety, także metoda C-14 ma swoje granice – do ok. 50-70 tys. lat wstecz. Inne procesy datowania izotopami promieniotwórczymi, takie jak metoda potasowo-argonowa czy metoda rubidowo-strontowa, umożliwiają określenie wieku obiektów w zakresie od 200 do 4500 milionów lat.
- rozszczepienie
- datowanie węglem c-14
- datowanie radiowęglem
- metoda C-14
- radon
- rozpad promieniotwórczy
- jądro atomowe
- energia
- fizyka jądrowa
- elektrownia konwencjonalna
- elektrownia
- reakcja łańcuchowa
- medycyna nuklearna
- ochrona radiologiczna
- pluton
- uran
- reaktor atomowy
- reaktor jądrowy
- promieniowanie jonizujące
- energetyka jądrowa
- elektrownia atomowa w Polsce
- elektrownia jądrowa w Polsce
- elektrownia atomowa
- elektrownia jądrowa
- reaktor badawczy
- promieniowanie
- atom
- energia atomowa
- energia jądrowa
- reaktor