Skip to content

Category - Technologia

Odkrycie uranu

We wrześniu 2011 roku grupa naukowców z CERN (Europejska Organizacja Badań Jądrowych) ogłosiła, że przeprowadzone przez nich pomiary wykazały, że neutrino porusza się z prędkością większą od prędkości światła w próżni. Gdyby takie odkrycie okazało się prawdziwe, w istotny sposób podważyć mogłoby fundamentalne założenie teorii względności. W marcu 2013 wykazano, że ogłoszone niezwykłe wyniki prędkości neutrina wynikały z błędu aparaturowego, kabel w jednym z urządzeń był zbyt luźny! Ta ostania, sławna „wpadka” w świecie nauki, została jednak po kilku miesiącach zweryfikowana i skorygowana. W przeszłości też zdarzały się takie przypadki, jeden z nich związany jest z odkryciem uranu w 1789 roku przez Martina Klaprotha – pierwiastka wykorzystywanego jako paliwo w reaktorach jądrowych.
Read More

Co to jest cykl paliwowy?

Zaopatrywanie w paliwo i usuwanie zużytego paliwa jest dla elektrowni jądrowych i reaktorów badawczych sprawą bardzo istotną. Zawarte w "wypalonym" paliwie materiały rozszczepialne należy odzyskać, a nieużyteczne i niebezpieczne odpady usunąć. Ten cykl procesów tworzy tzw. cykl paliwowy.
Read More

Pluton. Cykl uranowo-plutonowy

Pluton praktycznie nie występuje w skorupie ziemskiej, produkowany jest w trakcie pracy reaktorów jądrowych. Ponad jedna trzecia energii produkowanej w większości elektrowni jądrowych pochodzi z plutonu. Pluton odzyskany w procesie recyklingu wypalonego paliwa jądrowego jest wykorzystywany do produkcji mieszanego paliwa (uranowo-plutonowego) MOX (Mixed Oxide Fuel). Pluton jest głównym paliwem w reaktorze na neutrony prędkie, a w każdym reaktorze jest on stopniowo produkowany z nierozszczepialnego U-238. W naszej biosferze znajduje się kilka ton plutonu, spuścizna testowych wybuchów jądrowych przeprowadzanych w atmosferze w latach 50. i 60. XX wieku.
Read More

Tor. Cykl torowo-uranowy

Większość energetycznych reaktorów jądrowych na świecie wykorzystuje paliwo jądrowe, w którym uran wzbogacony jest do 5% w izotop U-235 (jest to jedyny izotop występujący w przyrodzie, rozszczepialny neutronami termicznymi). Pluton powstaje w reaktorze jądrowym w wyniku wychwytu neutronu przez izotop U-238, którego zawartość w uranie naturalnym wynosi 99,3%. Umownie nazywamy to pracą elektrowni jądrowej w cyklu uranowo-plutonowym (U-Pu). W ostatnich latach wzrasta jednak zainteresowanie cyklem torowo-uranowym (Th-U), w którym to powstaje inny materiał rozszczepialny, izotop U-233. Dlatego tor, pierwiastek, którego zawartość w skorupie ziemskiej jest około trzy do czterech razy większa niż uranu, nazywany jest materiałem paliworodnym.
Read More

Proces produkcji paliwa jądrowego

Front-end jądrowego cyklu paliwowego to część tego cyklu prowadząca do produkcji energii elektrycznej w reaktorze jądrowym. Składa się z czterech etapów: wydobycia i mielenia, konwersji, wzbogacania i wytwarzania. Wydobywanie i mielenie to proces pozyskiwania rudy uranu z ziemi, a następnie fizycznej i chemicznej obróbki rudy w celu uzyskania koncentratu uranu, tzw. „yellow cake”. Konwersja uranu wytwarza sześciofluorek uranu, gazową formę uranu, z koncentratu uranu. Wzbogacanie uranu fizycznie oddziela i koncentruje rozszczepialny izotop U-235. Wzbogacony uran stosowany w reaktorach jądrowych zawiera około 3-5% U-235, podczas gdy wzbogacony uran do celów militarnych ponad 90% U-235. Produkcja paliwa jądrowego obejmuje produkcję prętów i zestawów paliwowych ze wzbogaconego uranu, które są projektowane na potrzeby konkretnego typu reaktora jądrowego.
Read More

Zaopatrzenie w paliwo jądrowe planowanych elektrowni jądrowych w Polsce

Bezpieczeństwo dostaw paliwa jądrowego zależy od pewności dostaw koncentratu uranowego, dostępu do usług cyklu paliwowego, a także pewności i niezawodności transportu materiałów jądrowych na różnych etapach cyklu paliwowego oraz transportu gotowego paliwa jądrowego. Zasady dotyczące dostaw uranu i usług jądrowego cyklu paliwowego w ramach Unii Europejskiej reguluje Traktat EUROATOM.
Read More

Bezpieczeństwo jądrowe – jak to się zaczęło?

W tym module przedstawimy niektóre urządzenia zapewniające bezpieczeństwo w elektrowniach jądrowych oraz opiszemy zasady ich działania. Wyjaśnimy, na czym polegają międzynarodowe ustalenia dotyczące definicji terminów „awaria” czy „incydent” w obiektach nuklearnych. Przyjęta terminologia, dotycząca zdarzeń w obiektach nuklearnych, różni się znacznie od potocznego rozumienia takich słów jak „incydent” czy „awaria”. Nie każde bowiem zdarzenie, określone jako „awaria” obiektu jądrowego, jest tak niebezpieczne, jak sugeruje to potoczne rozumienie słowa awaria. Poza tym przekonamy się, że elektrownia jądrowa to nie tylko ogromna ilość maszyn, ale również miejsce, w którym pracują ludzie. Badania nad ryzykiem występującym w elektrowniach jądrowych (mające na celu obniżenie zagrożenia występowania awarii) uwzględniają nie tylko stan techniczny obiektów, ale również „czynnik ludzki”, skupiając się na analizie przebiegu procesów i struktur decyzyjnych.
Read More

Czym jest bezpieczeństwo jądrowe?

Zapewnienie bezpieczeństwa jądrowego i ochrony radiologicznej (BJiOR) ludności mieszkającej w okolicy obiektów energetyki jądrowej i ich personelu, wraz z ochroną fizyczną tych obiektów, jest warunkiem koniecznym budowy energetyki jądrowej. Jego spełnienie wymaga zatem współpracy wszystkich instytucji odpowiedzialnych za BJiOR, w tym przede wszystkim Państwowej Agencji Atomistyki (pełniącej rolę dozoru jądrowego), inwestorów przyszłych obiektów energetyki jądrowej, ich operatorów oraz dostawców technologii jądrowych. Obszarami współpracy będą wszystkie kwestie związane z zapewnieniem odpowiedniego poziomu bezpieczeństwa jądrowego i ochrony obiektów energetyki i materiałów jądrowych.
Read More

Bardzo ważne zadanie – ochrona przed promieniowaniem

W elektrowniach jądrowych zarówno promieniotwórczość, jak i promieniowanie jonizujące są codziennością. W procesie przetwarzania energii jądrowej na energię elektryczną tworzą się ogromne ilości substancji promieniotwórczych, a promieniowanie jonizujące jest stale emitowane – jedno i drugie, może być niebezpieczne dla człowieka i dla środowiska. Substancje promieniotwórcze, które powstają w reaktorach muszą być „pod nadzorem” – nie można dopuszczać do ich niekontrolowanego rozproszenia. Podobnie promieniowanie jonizujące, gdy nie jest potrzebne, jest zatrzymywane przez osłony. Te podstawowe wymogi muszą być spełnione zarówno podczas normalnej pracy reaktora, jak i w czasie awarii.
Read More

Incydent a awaria

Gdy opinia publiczna mówi o "awarii", to zazwyczaj określenie to nie jest używane precyzyjnie. W niektórych krajach, a także przepisach międzynarodowych, definiuje się tzw. "incydent w elektrowni jądrowej". Według Międzynarodowej Agencji Energii Atomowej incydentem nazywa się każde niezamierzone zdarzenie, takie jak błędy obsługi, awarie urządzeń, zdarzenia, które mogą dawać początek awariom i wypadkom, przypadkowe lub celowe złośliwe działanie człowieka, mogące prowadzić do potencjalnie groźnych konsekwencji z punktu widzenia ochrony radiologicznej.
Read More
Back To Top