Skip to content

Category - Fizyka

Działanie promieniowania na komórkę

Oddziałując z materią, promieniowanie jonizujące wywołuje zjawiska fizyczne, w tym jonizację, której zawdzięcza swoją nazwę, a w żywych organizmach również zjawiska biologiczne. Może powodować uszkodzenie komórek i z tego względu może być szkodliwe. Ogólne skutki działania promieniowania na komórkę obejmują pełne spektrum odpowiedzi: od braku jakiejkolwiek reakcji, poprzez przejściowe zmiany czynnościowe lub morfologiczne, do zmian trwałych i wreszcie do śmierci komórki w wyniku poważnych uszkodzeń.
Read More

Wpływ promieniowania na zdrowie

Duże dawki promieniowania są zawsze szkodliwe, natomiast małe dawki mogą dawać efekty korzystne. W zakresie małych dawek uszkodzenia naprawiane są przez stosunkowo silne, indukowane przez promieniowanie komórkowe mechanizmy obronne i naprawcze. Substancje chemiczne, czy inne czynniki wewnątrz- lub zewnątrzkomórkowe, powodują podobne uszkodzenia materiału genetycznego co promieniowanie jonizujące, dzięki temu komórka jest ciągle w stanie "gotowości", a to stawia ją w korzystnej sytuacji. Jednak w miarę zwiększania mocy dawki wydajność komórkowych mechanizmów obronnych maleje.
Read More

Dozymetria biologiczna w przypadkach awaryjnych

W przypadku awarii urządzenia wytwarzającego promieniowanie jonizujące, błędnej decyzji pracownika czy ataku terrorystycznego ocena dawki pochłoniętej metodami dozymetrii fizycznej nie zawsze jest dokładna i możliwa do przeprowadzenia. W wiarygodny sposób można ją jednak wykonać metodami dozymetrii biologicznej, która zajmuje się rekonstrukcją dawki pochłoniętej na podstawie zmian wywołanych przez promieniowanie jonizujące w komórkach i tkankach organizmu człowieka. Znajomość dawek otrzymanych przez ofiary nadzwyczajnych zdarzeń radiacyjnych umożliwia ocenę ryzyka wystąpienia w przyszłości niepożądanych skutków zdrowotnych, głównie nowotworów. Natomiast  w  przypadku przekroczenia dawek progowych dla skutków deterministycznych, znajomość dawki ułatwia lekarzom wybór najbardziej odpowiedniej metody leczenia ewentualnych oparzeń czy zespołów popromiennych.
Read More

Przemiany energii – wstęp

W tym module będziemy omawiać podstawowe pojęcia fizyczne: siła, praca, moc i energia. Te cztery słowa często pojawiają się w języku potocznym w rozmaitym kontekście: „siła charakteru”, „praca umysłowa’, „moc ducha” czy „energia życiowa”. W języku nauki odnoszą się one do ściśle zdefiniowanych, mierzalnych wielkości fizycznych.
Read More

Jednostki miary energii

Fizyczne pojęcie energii zostało wprowadzone przed około 150 laty. W pracach naukowych zalecane jest podawanie energii w dżulach (J), będących również jednostkami pracy i ciepła z układu SI. W wielu gałęziach techniki oraz w życiu codziennym bardzo często – z powodów zaszłości historycznych - używane są także inne jednostki energii.
Read More

Praca i moc

Wiemy już, że rozróżnia się pojęcia pracy i energii, mimo że mierzymy je w tych samych jednostkach, w dżulach. I uwaga: niektórych pojęć nie można mylić z energią i pracą. Jednym z tych pojęć jest moc. Moc jest miarą tego, ile pracy zostanie wykonanej w danym czasie. Także siła jest czymś innym niż energia i praca, ale w następujący sposób od nich zależy: siła wyraża na przykład, jak mocno zostanie przyspieszony jakiś przedmiot lub ściśnięta sprężyna. Siłę mierzymy w niutonach (N). Gdy jakaś siła F działa wzdłuż odcinka drogi S, wykonywana jest praca L = droga razy siła = F∙S. Energia układu wzrasta lub maleje o wartość wykonanej pracy. Potrzeba przykładu? Gdy ściśniemy sprężynę pewną siłą na określonym odcinku drogi, wykonamy pracę. Praca ta jest dostarczana sprężynie i dopóki pozostaje ona ściśnięta, w sprężynie jest więcej energii i jest to tak zwana energia naprężenia.
Read More

Formy energii

Poznaliśmy najważniejsze różnice pomiędzy potocznym użyciem pojęcia energii, a stosowaniem tego słowa w fizyce. Ale brakuje jeszcze jednej szczególnie ważnej różnicy. Na co dzień mówimy, że „wytwarzamy” bądź „zużywamy” energię – w rzeczywistości nie możemy jednak ani „wyprodukować”, ani „zniszczyć” energii. Energia całkowita – wewnątrz układu zamkniętego – nigdy się nie zmniejsza i nigdy nie zwiększa (prawo zachowania energii). Może jedynie ulegać przemianom z jednej formy w inną. Poznawanie relacji pomiędzy pracą i energią przypomina kalejdoskop. Zawsze, gdy wykonywana jest praca, energia zamienia się z jednej formy w drugą. Dlatego też energia występuje w licznych formach. Dla przykładu, gdy jedziesz na rowerze do szkoły, chemiczna energia w twoich mięśniach zamienia się w energię ruchu, słyszymy dźwięki, zależne od tego, po jakiej powierzchni jedziemy, na zakrętach spod kół lecą ziarna żwiru lub bryzgi wody. Szczególnym rodzajem przemiany energii jest równoważność pomiędzy masą i energią, co ma decydujące znaczenie również przy wszystkich reakcjach jądrowych.
Read More

Prawo zachowania energii

To, co w fizyce nazywamy „układem zamkniętym“, można sobie wyobrazić jako pomieszczenie pod „super” pokrywą, przez które nie może przedostać się żadna energia, ani do środka, ani na zewnątrz.
Read More

E = mc²

E = mc² – ten wzór wszyscy już z pewnością kiedyś widzieliśmy. Albert Einstein opublikował go w podobnej formie w uzupełnieniu do wydanej przez siebie w 1905 roku „Szczególnej teorii względności”. Wzór ten zakłada, że energia i masa są sobie równoważne – masa jest więc inną formą energii i mogą one zostać w siebie przemienione. Na przykład w reaktorze jądrowym. Produkty rozszczepienia jądra uranu mają łącznie mniejszą masę niż początkowe jądro uranu. Różnica mas zostaje uwolniona w postaci energii.
Read More
Back To Top