Skip to content

Jak działają detektory?

Część z detektorów wytwarza impuls elektryczny w wyniku przepływu powstałych przez jonizację ładunków, umożliwiając niejako policzenie wytworzonych nośników prądu (detektory aktywne). Tego typu detektory to m.in. licznik Geigera–Müllera, czy komora jonizacyjna – wypełnione gazem oraz licznik scyntylacyjny czy półprzewodnikowy, w których elementem czynnym jest ciało stałe. Sygnał docierający do detektora jest tutaj mierzony w czasie rzeczywistym, a detektor wymaga zasilania. Innym typem detektorów są detektory pasywne, które zbierają informacje przez pewien czas ekspozycji na promieniowanie, po czym poddawane są odpowiedniej obróbce mającej na celu oszacowanie wielkości mierzonego sygnału. Nie wymagają przy tym zasilania. Przykładami detektorów pasywnych są klisze fotograficzne, detektory termoluminescencyjne, optoluminescencyjne, folie (płytki) CR–39.
Read more

Detekcja – o co chodzi?

Promieniowanie jonizujące to promieniowanie o bardzo wysokiej energii, które może powodować uszkodzenie materii, na którą działa. Wydawać by się mogło, że to bardzo negatywna cecha, ale okazuje się, że promieniowanie jonizujące może być pomocne w wielu aspektach życia człowieka. Ze względu na swoją zdolność przenikania materii jest w stanie wejść w głąb nawet najtwardszych i najgęstszych materiałów. Tym bardziej łatwo przenika ciało człowieka, co jest wykorzystywane w medycynie, gdzie promieniowanie jonizujące ma bardzo wiele zastosowań – od diagnozy (prześwietlenia rentgenowskie, wykrywanie lokalizacji nowotworów), po planowanie leczenia (ustawienie i zweryfikowanie pozycji pacjenta przed napromienieniem), aż do terapii (leczenie chorób nowotworowych, prowadzenie zabiegów medycznych przy wspomaganiu wiązkami rentgenowskimi). Promieniowanie jonizujące wykorzystywane jest również w wielu jednostkach naukowych (np. do konstruowania materiałów osłonnych, badań nieniszczących, produkcji radiofarmaceutyków) oraz przemyśle (np. do prześwietlania spawów, czy mierzenia grubości materiałów).
Read more

Kilka słów wstępu

Gdy pojawia się termin „promieniowanie jonizujące”, chcielibyśmy uzyskać odpowiedzi na kilka prostych pytań: Czy pojawiło się wokół nas? – wystarczy czasem odpowiedź typu „tak/nie”. Jaka jest natura tego promieniowania? Czy są to cząstki? A może jakieś fale? Jeżeli to są cząstki, to jaką mają masę? Jaką niosą energię? Jeżeli są to fale elektromagnetyczne, to o jakiej długości/częstotliwości? Jaką niosą energię? Czy to promieniowanie jonizujące działa na nasze ciało? Jakie są skutki spotkania z promieniowaniem jonizującym? Szkodzi? Nie szkodzi? Czy ewentualny rezultat oddziaływania można zmierzyć? Jeżeli może nam zaszkodzić, to chcielibyśmy wiedzieć: Gdzie napotykamy promieniowanie jonizujące? Jak uchronić się przed niechcianym promieniowaniem jonizującym?
Read more

Średnia dawka promieniowania

Po lekturze poprzednich rozdziałów może się wydawać, jakby niemalże cały świat był promieniotwórczy! Czy nie należy w takim razie nie wchodzić więcej do piwnicy? I nie wędrować już po górach, gdyż ryzykuje się napromieniowanie przez granit i ewentualnie poprzez późniejsze zdjęcie rentgenowskie z powodu złamania kości?
Read more

Cywilizacyjne – „sztuczne” – źródła promieniowania jonizującego

Nie należy lekceważyć ekspozycji na promieniowanie jonizujące pochodzenia „cywilizacyjnego” – lub dokładniej: ekspozycji na promieniowanie jonizujące, którego źródłem są radioaktywne izotopy i inne źródła promieniowania, które nie istniałyby bez zamierzonej lub niezamierzonej działalności człowieka. W Europie dawka promieniowania od sztucznych źródeł promieniowania jonizującego jest mniej więcej tak samo wysoka, jak dawka promieniowania ze źródeł, które już i tak znajdują się w przyrodzie. Największy udział w tym mają procedury medyczne, np. diagnostyka rentgenowska i radiofarmaceutyki. Udział dawki promieniowania pochodzącej z innych źródeł, na przykład z ciekłych i gazowych odpadów z elektrowni jądrowych, jest o wiele mniejszy. Również podczas testów broni atomowej, do atmosfery zostały uwolnione radioaktywne nuklidy. I wreszcie, nawet w gospodarstwie domowym wydzielane jest promieniowanie, na przykład w niektórych zegarkach na rękę i z ekranów kineskopów telewizorów. Oczywiście ilości te, generalnie rzecz biorąc, są całkiem niewielkie i w porównaniu z wkładem z diagnostyki rentgenowskiej są niemalże bez znaczenia.
Read more

Radionuklidy „naturalne”

W skorupie ziemskiej, w atmosferze, w wodzie oceanów znajdują się pewne ilości naturalnych nuklidów promieniotwórczych. Skąd się biorą? Pochodzą przede wszystkim z czasu powstawania Ziemi, ponieważ znalazły się w proto-Ziemi podczas skupiania się gazów i pyłów z gwiezdnych wybuchów gwiazd supernowych. Z powodu czasu połowicznego rozpadu porównywalnego z wiekiem Ziemi (~4,5 miliarda lat), większość z tych izotopów istnieje do dziś i wciąż wysyła promieniowanie jonizujące.
Read more

Promieniowanie kosmiczne

Promieniowanie kosmiczne odkryte zostało już w 1912 roku. Dziś wiadomo, że jest wiele jego źródeł – część pochodzi ze Słońca, część z wybuchów gwiazd supernowych czy np. z procesów zachodzących, być może, wokół czarnych dziur, kwazarów i gwiazd neutronowych, w wyniku których obserwujemy promieniowanie rentgenowskie czy gamma. Promieniowanie kosmiczne jest bardzo przenikliwe: zostało zaobserwowane nawet na głębokości 4000 metrów poniżej poziomu morza. W pierwotnym promieniowaniu kosmicznym napotykamy cząstki posiadające energie aż do 1020 eV,  czyli prawie 100 milionów razy więcej niż można wytworzyć w ziemskich akceleratorach - w Ośrodku Jądrowym CERN zostanie osiągnięta energia ~7 TeV, czyli 7 ⋅ 1012 eV. Promieniowanie docierające z Wszechświata do atmosfery ziemskiej składa się z fotonów najróżniejszych energii oraz cząstek: protonów (87%), jąder helu (11%), elektronów (~1%); z niewielkim udziałem (~1%) cięższych jąder – od helu do uranu. W górnych warstwach atmosfery promieniowanie to zderza się z jej składnikami, w wyniku czego powstają nowe rodzaje promieniowania jonizującego, czyli promieniowanie kosmiczne „wtórne”: neutrony, elektrony, miony, piony oraz oczywiście fotony.
Read more

Źródła promieniowania

Kiedy świadomie trzyma się licznik Geigera tak, że nie jest zwrócony w kierunku żadnego oznaczonego źródła promieniotwórczego, lecz na przykład gdzieś „w powietrze”, to mimo wszystko licznik „tyka” dalej. Skąd bierze się promieniowanie jonizujące, które rejestruje licznik? W istocie pochodzi z trzech źródeł: z promieniowania kosmicznego, z naturalnych radionuklidów w powietrzu (przede wszystkim produktów rozpadu radioaktywnego radonu)  i wreszcie z naturalnych materiałów radioaktywnych obecnych w skorupie ziemskiej, w naszym ciele czy w obudowie licznika.
Read more

Gdzie stosujemy promieniowanie jonizujące?

Od początku, kiedy to Röntgen odkrył tajemnicze promieniowanie, które nazwał promieniowaniem X, zdawano sobie sprawę z możliwości, jakie przyniosło to odkrycie. Postęp, jaki nastąpił przez ponad 100 lat, przyniósł szereg możliwości stosowania materiałów promieniotwórczych i urządzeń wytwarzających promieniowanie. Korzystamy z nich na co dzień znacznie częściej niż nam się wydaje.
Read more

Szczególny przypadek: wychwyt elektronu

W przypadku naturalnych i sztucznie wytwarzanych radionuklidów, oprócz rozpadu alfa i beta może wystąpić jeszcze inny rodzaj przemiany, tak zwany wychwyt elektronu. Jądro atomu ubogiego w neutrony wychwytuje elektron, przeważnie z najbardziej wewnętrznej własnej powłoki elektronowej (powłoki K, stąd przemianę tę nazywa się też "wychwytem K"), wskutek czego jeden z protonów w jądrze przekształca się w neutron.
Read more
Back To Top