Skip to content

Category - elektrownia

Promieniowanie neutronowe

Poza promieniowaniem alfa, beta i gamma znamy również inne rodzaje promieniowania jonizującego. Wśród nich bardzo ważne jest promieniowanie neutronowe, ponieważ odgrywa ono decydującą rolę w wytwarzaniu i wykorzystaniu energii jądrowej.
Read More

Promieniowanie gamma

Promieniowanie gamma jest rodzajem fal elektromagnetycznych o energii wyższej od energii promieniowania rentgenowskiego i światła widzialnego. Istotną różnicą jest to, że promieniowanie rentgenowskie oraz światło widzialne mają swe źródło w procesach zachodzących w elektronowej powłoce atomowej, a promieniowanie gamma – jest wynikiem procesów zachodzących w jądrach atomowych.
Read More

Promieniowanie beta

Przy rozpadzie beta z jądra atomu radioaktywnego izotopu emitowane są ujemnie naładowane elektrony. Mówimy wówczas o rozpadzie beta minus. Istnieje także rozpad beta plus, ale jest to zjawisko o wiele rzadsze wśród naturalnych nuklidów promieniotwórczych.
Read More

Promieniowanie alfa

Przy rozpadzie alfa duże jądra atomowe wyrzucają z siebie mniejsze jądra atomowe - a mianowicie jądra pierwiastka helu: te tak zwane cząstki alfa składają się z dwóch dodatnio naładowanych protonów i dwóch obojętnych neutronów. Przykładem izotopu emitującego promieniowanie alfa jest rad-226. Produktem jego promieniotwórczego rozpadu jest izotop innego pierwiastka radon-222.
Read More

Odkrycie promieniotwórczości

Pod koniec XIX wieku wśród fizyków i chemików panowało przeświadczenie, że w dziedzinie nauk ścisłych niewiele jest już do odkrycia. Sądzono, że świat nie ma już przed ludźmi tajemnic, a istnienie obserwacji trudnych do wyjaśnienia na gruncie obowiązujących teorii traktowano jako mało istotne szczegóły. Kilka ostatnich lat tego wieku i początkowe lata XX wieku zupełnie odmieniło ten pogląd. Dokonano szeregu zaskakujących odkryć, od promieniowania X, poprzez promieniotwórczość naturalną, teorię kwantów, aż po teorię względności Einsteina. Osiągnięcia fizyków z przełomu wieków definitywnie zmieniły oblicze fizyki.
Read More

Promieniotwórczość – co to takiego?

Promieniotwórczość? Naukowcy mianem promieniotwórczości określają występujące w naszym środowisku naturalne lub wywołane sztucznie takie przemiany nuklidów (jąder atomowych), w których emitowana jest energia w postaci różnych rodzajów promieniowania. W module tym zostanie wyjaśnione, co to dokładnie oznacza. 
Read More

Energia wiązania jądra

Wzór sformułowany przez Einsteina, opisujący równoważność masy i energii: E = m • c², pozwala obliczyć, ile energii można uzyskać z danej masy (E: energia; m: masa; c: prędkość światła w próżni).
Read More

Defekt masy

Wielu z nas z pewnością zna ten cytat: „Całość to coś więcej niż suma jej elementów”. Są to słowa wypowiedziane przez greckiego filozofa i przyrodnika Arystotelesa, któremu zresztą przypisywane są także następujące cytaty: „Nawet myślenie szkodzi niekiedy zdrowiu.” i „Ileż jest rzeczy, których nie potrzebuję”. W „Fizyce”, jednym z jego głównych dzieł, Arystoteles filozofował na temat m.in. przestrzeni, czasu, ruchu czy „przyczyny sprawczej”, ale nie na temat jąder atomowych - nie wiedziano jeszcze wtedy o ich istnieniu. Własności struktury jądrowej nie są prostą sumą własności składników - swobodny neutron nie jest trwały - rozpada się z czasem połowicznego rozpadu ok. 10 min, a gdy jest związany w jądrze atomowym to cała struktura może mieć czas połowicznego rozpadu nawet 1022 i więcej lat.
Read More

Izotopy

Atomy nie są identyczne: różnią się liczbą protonów i neutronów w jądrze, jak również liczbą elektronów w powłoce, która jest równa liczbie protonów.
Read More
Back To Top